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a b s t r a c t

Lately, so-called ‘‘quantum’’ models, based on parts of themathematics of quantummechanics, have been
developed in decision theory and cognitive sciences to account for seemingly irrational or paradoxical
human judgments.We consider here some such quantum-likemodels that address question order effects,
i.e. cases in which given answers depend on the order of presentation of the questions. Models of various
dimensionalities could be used; can the simplest ones be empirically adequate? From the quantum law of
reciprocity, we derive new empirical predictions that we call the Grand Reciprocity equations, that must
be satisfied by several existing quantum-like models, in their non-degenerate versions. Using substantial
existing data sets, we show that these non-degenerate versions fail theGR test inmost cases,whichmeans
that, if quantum-like models of the kind considered here are to work, it can only be in their degenerate
versions. However, we suggest that the route of degenerate models is not necessarily an easy one, and we
argue for more research on the empirical adequacy of degenerate quantum-like models in general.

© 2016 Elsevier B.V. All rights reserved.
‘‘Research is needed which designs tests of quantum properties
such as the law of reciprocity and the law of double stochasticity’’

(Busemeyer and Bruza 2012, 342)

1. Introduction

In decision theory and in cognitive sciences, classical cogni-
tive models of judgment rely on Bayesian probabilities and sup-
pose that agents’ decisions or choices are guided by preferences
or attitudes that are determined at any time. Yet, various empiri-
cal results have threatened the predictive and explanatory power
of these classical models: human judgments display order effects –
the answers given to two questions depend on the order of presen-
tation of these questions (Schuman and Presser, 1981; Tourangeau
et al., 2000; Moore, 2002) –, conjunction fallacies – someone is
judged less likely to have characteristic C than characteristics C
and D (Tversky and Kahneman, 1982, 1983; Gavanski and Roskos-
Ewoldsen, 1991; Stolarz-Fantino et al., 2003) –, violate the sure-
thing principle – stating that preferring X to Y given any possible
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state of the world should imply preferring X to Y when the exact
state of the world is not known (Allais, 1953; Ellsberg, 1961; Shafir
and Tversky, 1992) –, or asymmetries in similarity—X is judged
more similar to Y than Y to X (Tversky, 1977; Krumhansl, 1978;
Ashby andPerrin, 1988). In the classical cognitive framework, these
behaviors have often been dubbed as irrational or paradoxical.

Recently, a research field that rely on so-called ‘‘quantum’’ or
‘‘quantum-like’’ models has developed to account for such behav-
iors. The qualifier ‘‘quantum’’ is used to indicate that the mod-
els exploit the mathematics of a contemporary physical theory,
quantum mechanics. Note that only some mathematical tools of
quantum mechanics are employed, and that the claim is not that
these models are justified by an application of quantum physics to
the brain. For that reason, we shall prefer to call them ‘‘quantum-
like’’ models. Such models put into question two classical charac-
teristics recalled above: they abandon Bayesian probabilities for
others which are similar to probabilities in quantum mechanics,
and they allow for preferences or attitudes to be undetermined.
Quantum-likemodels have receivedmuch interest from psycholo-
gists, physicists, economists, cognitive scientists and philosophers.
For example, new theoretical frameworks have been proposed in
decision theory and bounded rationality (Danilov and Lambert-
Mogiliansky, 2008, 2010; Yukalov and Sornette, 2011).

Various quantum-like models have been proposed to account
for any of the seemingly paradoxical behaviors recalled above (for
reviews, see Pothos and Busemeyer, 2013; Ashtiani and Azgomi,
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2015). First, as the mathematics involved in quantum mechanics
are well-known for their non-commutative features, one of their
natural application is the account of question order effects. For
instance,Wang and Busemeyer (2013) andWang et al. (2014) offer
a general quantum-likemodel for attitude questions that are asked
in polls. Conte et al. (2009) present a model for mental states of
visual perception, and Atmanspacher and Römer (2012) discuss
non-commutativity. Quantum-like models have also been offered
to explain the conjunction fallacy. For instance, Franco (2009)
argues that it can be recovered from interference effects, which
are central features in quantummechanics and at the origin of the
violation of classical probabilities. Busemeyer et al. (2011) present
a quantum-like model that could explain conjunction fallacy from
someorder effects. The violation of the sure thing principle has also
been investigated by means of quantum-like models. Busemeyer
et al. (2006), and Busemeyer and Wang (2007) use quantum
formalism to explain this violation by introducing probabilistic
interference and superposition of states. Khrennikov and Haven
(2009) also explain Ellsberg’s paradox, and Aerts et al. (2011)
model theHawaii problem. Lambert-Mogiliansky et al. (2009) offer
a model for the indeterminacy of preferences. Dynamical models,
that rely on a time evolution of the mental state, have also been
introduced (Pothos and Busemeyer, 2009, Busemeyer et al., 2009,
Trueblood and Busemeyer, 2011). Several other empirical features,
such as asymmetry judgments in similarity have also been offered
a quantum-like model Pothos and Busemeyer (2011).

We shall concentrate in this paper on one kind of quantum-like
models, those which claim to account for question order effect—
that answers dependon the order inwhich questions are asked.We
choose these models because (i) order effect is a straightforward
application of the non-commutative mathematics from quantum
mechanics, (ii) order effect models are perhaps the simplest ones
and (iii) some of them are at the roots of other models. All
quantum-like models for order effect are not identical. Yet, several
of them are built along the same lines, as in Conte et al. (2009),
Busemeyer et al. (2009), Busemeyer et al. (2011), Atmanspacher
and Römer (2012), Pothos and Busemeyer (2013), Wang and
Busemeyer (2013) and Wang et al. (2014). We choose to focus
here on this kind of models for order effect (to be characterized,
at least partly, in Section 2). So, we do not consider for instance
the model in Aerts et al. (2013) that rely on different hypotheses,
or a quantum-like model for order effect in inference that can be
found in Trueblood and Busemeyer (2011) or in Busemeyer et al.
(2011). Our analyses only bear on the previously mentioned kind
of models.

When such quantum-like models for order effects were
proposed, empirical adequacy was cared about: it was argued that
the models were able to account either for existing empirical data
(e.g. Wang and Busemeyer, 2013 for the data from Moore, 2002,
Wang et al., 2014 for data from around 70 national surveys) or
for data from new experiments (e.g. Conte et al., 2009, Wang
and Busemeyer, 2013). This is not all: a supplementary a priori
constraint (the ‘‘QQ equality’’) has been derived and it has been
successfully verified on the above-mentioned data (Wang and
Busemeyer, 2013; Wang et al., 2014). So, it seems that quantum-
like models for question order effects are well verified and can be
considered as adequate, at least for a vast set of experiments.

However, some details remain to be settled. In many cases, the
above-referred papers do not specify exactly which model, with
which parameters, is to account for the data in this or thus order
effect situation. In particular, when it is claimed that some data
can be accounted for by a quantum-like model, the dimensionality
of the model is often not specified, and the most general case is
assumed: the model is supposed to be N dimensional, and the
answers to the questions can be represented by subspaces of any
dimension. This encompasses two cases: either the answers are
represented by 1-D subspaces, in which case the model is said to
be non-degenerate, or the answers are represented by subspaces of
larger dimensions, inwhich case themodel is said to be degenerate.
The papers do not always specify whether the model that is to
account for the data can remain simple and be non-degenerate, or
has to be degenerate—this is a question of theoretical importance,
as we shall argue. The quantum-like literature is inclined to
favor degenerate models, insisting on the high-dimensionality of
the space and on the complexity of the experimental situation
to be modeled, and often considers non-degenerate models as
toy models and use them for illustrative purposes only.1 So, the
question of choosing between non-degenerate and degenerate
models on an empirical basis has not been fully dealt with, and it
remains unclear so far whether the simple non-degenerate version
of the models could be empirically adequate. Is there a simple
way to test whether a non-degenerate version of the quantum-like
models is sufficient to account for some order effect data?

The present paper argues that this question can receive a
positive answer. We show that the non-degenerate versions of
the quantum-like models under consideration can actually be
empirically tested in another unstudied – although simple – way,
that bears on data that were not intended to be explained but
that are nevertheless predicted by themodels. After reconstructing
a non-degenerate quantum-like version of a model for order
effect (Section 2), we derive from the quantum law of reciprocity
a set of constraints for it that we call the Grand Reciprocity
(GR) equations (Section 3). In Section 4, we argue that the non-
degenerate versions of the models that can be found in Conte
et al. (2009), Busemeyer and Bruza (2012), Pothos and Busemeyer
(2013), Wang and Busemeyer (2013) and Wang et al. (2014),
have to obey the GR equations—note that these papers, except
for Conte et al. (2009), also consider degenerate versions of the
models, that are not required to obey the GR equations, and thus
will not be tested here. Using only available data and without
carrying out any new experiment, we are able to put the GR
equations to the test (Section 5). We show that a vast majority
of empirical cases fail to satisfy the GR equations, which means
that the non-degenerate versions of the above-mentioned models
cannot account for these cases. In other words, if the quantum-
like models that have been proposed are indeed to work, it cannot
be in the special case of their non-degenerate versions, as the
authors themselves had rightly anticipated, and the data should
be accounted for with degenerate models. In Section 6, we suggest
however that the route of degenerate models is not necessarily
an easy one, and we argue for more research on the empirical
adequacy of models in general. Overall, the positive conclusion of
our results, we suggest, is that research on quantum-like models
for question order effect should be directed towards degenerate
models, both as a consequence of the failure of non-degenerate
ones and in order to find generalizations of the GR equations that
should enable to empirically test them. This paper is the first one to
challenge non-degeneratemodels for order effect and to show that
they cannot be used as such inmany cases. Ourwork putswarnings
about the future use of these specificmodels, and provides a critical
and constructive look at quantum models of cognition.

1 For instance, in Busemeyer and Bruza (2012), the non-degenerate model is
presented as ‘‘a simple example’’ (p. 100) or as ‘‘much too simple’’ (p. 108), before
the general model, which is degenerate, is presented. That non-degenerate models
are ‘‘toy models’’ is also what suggest Busemeyer et al. (2015) p. 240, albeit for
quantum-likemodels for the conjunction fallacy. An exception towards degeneracy
is Conte et al. (2009), one of the first papers in the field, which only considers non-
degenerate models.
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2. A general non-degenerate quantum-like model for question
order effect

As indicated in the introduction,we are concernedherewith the
following quantum-likemodels for order effect: Conte et al. (2009),
Busemeyer et al. (2009), Busemeyer et al. (2011), Atmanspacher
and Römer (2012), Pothos and Busemeyer (2013), Wang and
Busemeyer (2013) andWang et al. (2014). As they are more or less
built along the same lines, we choose for simplicity to present in
this section one simple and generalmodel,which sets thenotations
and on which all the discussions will be made. A crucial point is
this: these models, except for Conte et al. (2009), are quite general
and can be degenerate or non-degenerate, as already noted. As we
shall be concerned herewith testing their non-degenerate versions
only, as a special case, the model we present in this section is non-
degenerate. In Section 4, we shall discuss in detail how this model
is included in the models from the above list.

The model is about the beliefs of a person, about which
dichotomous yes–no questions can be asked, for instance ‘‘is
Clinton honest?’’. A vector space on the complex numbers is
introduced to represent the beliefs of the agent, and the answers
to the questions. In the model, two dichotomous questions A and
B are posed successively to an agent, in the order A-then-B or B-
then-A. Answer ‘‘yes’’ (respectively ‘‘no’’) to A is represented by
the vector |a0⟩ (respectively |a1⟩), and similarly for B, with vectors
|b0⟩ (respectively) |b1⟩. It is important to note that an answer
is supposed to be represented by a vector (or more exactly, see
below, by the ray defined by this vector), and not by a plane or
by any subspace of dimension greater than 1. Since there are no
other possible answers to question A (respectively B) than 0 and
1, the set (|a0⟩, |a1⟩) (respectively (|b0⟩, |b1⟩)) forms a basis of the
vector space of possible answers, and the vector space is thus of
dimension 2. Note that it is the same vector space that is used to
represents answers to questions A and B; this space just has two
different bases.2

The vector space is supposed to be equipped with a scalar
product, thus becoming a Hilbert space: for two vectors |x⟩ and
|y⟩, the scalar product ⟨x|y⟩ is a complex number; its complex
conjugate, ⟨x|y⟩∗, is just ⟨y|x⟩. The Hilbert space is on the complex
numbers, and vectors can be multiplied by any complex number.3
The basis (|a0⟩, |a1⟩) is supposed to be orthonormal, i.e. ⟨a0|a1⟩ = 0
and ⟨a0|a0⟩ = ⟨a1|a1⟩ = 1; similarly for B. Note that there exists a
correspondence between the two bases (cf. Fig. 1 left):

|b0⟩ = ⟨a0|b0⟩|a0⟩ + ⟨a1|b0⟩|a1⟩, (1)
|b1⟩ = ⟨a0|b1⟩|a0⟩ + ⟨a1|b1⟩|a1⟩, (2)

and similarly for |a0⟩ and |a1⟩ expressed as a function of |b0⟩ and
|b1⟩.

An agent’s beliefs about the subject matter of the questions
A and B are represented by a normalized belief state |ψ⟩ from
this vector space (|⟨ψ |ψ⟩|

2
= 1). It is supposed to gather all the

relevant information to predict her behavior in the situation (like
in orthodox quantummechanics). |ψ⟩ can be expressed in the basis
(|a0⟩, |a1⟩) as

|ψ⟩ = α0|a0⟩ + α1|a1⟩, (3)

2 In the literature, questions that can be represented in this way are known as
‘‘incompatible’’. ‘‘Compatible’’ questions have a common basis, but the model is
then equivalent to a classical one, and there is nothing quantum about it. Cf. for
instance Busemeyer and Bruza (2012, 32–34).
3 We consider here this general case. In the literature, somequantum-likemodels

consider a real Hilbert space, inwhich scalar products are real numbers, and vectors
can be multiplied by real numbers only.
with (α0, α1) ∈ C2 (cf. Fig. 1 right). It can also be expressed in the
basis (|b0⟩, |b1⟩) as

|ψ⟩ = β0|b0⟩ + β1|b1⟩, (4)

with (β0, β1) ∈ C2, and with an appropriate correspondence
between the coefficients.

The belief state |ψ⟩ determines the answer in a probabilistic
way, and changes only when a question is answered, according to
the following rules:

• Born’s rule: the probability for the agent to answer xi (i = 0, 1)
to question X (X = A, B) is given by the squaredmodulus of the
scalar product between |ψ⟩ and |xi⟩:

Pr(xi) = |⟨xi|ψ⟩|
2 (5)

• projection postulate: the agent’s belief state just after the
answer xi is the normalized projection of her belief state prior to
the question onto the vector |xi⟩ corresponding to her answer:

|ψ⟩ −→
⟨xi|ψ⟩

|⟨xi|ψ⟩|
|xi⟩. (6)

For instance, if an agent is described by the state vector |ψ⟩ =

α0|a0⟩ + α1|a1⟩, the probability that she answers i to question A is
given by |αi|

2, in which case the state after the answer is αi
|αi|

|ai⟩.
In Fig. 1, this probability can be obtained by first orthogonally
projecting |ψ⟩ on the basis vector corresponding to the answer,
and then taking the square of this length. A consequence of the
projection postulate in this model is that, just after an answer i to
question X has been given, the state is of the form λ|xi⟩with λ ∈ C
and |λ| = 1. The fact that the state after the answer is equal to
|xi⟩ ‘‘up to a phase factor’’, as one says, is true whatever the state
prior to the question. In Fig. 1, in the case of a real Hilbert space,
the projection postulates can be interpreted as follow: project |ψ⟩

on the basis vector corresponding to the answer, then normalize
it (i.e. expand it so that it gets a length 1); the result is ±|xi⟩,
according to the relative orientation of |ψ⟩ and |xi⟩. In the general
case, answering a question modifies the agent’s state of belief, but
there are exceptions: if an agent’s state of belief is λ|xi⟩ (with
|λ| = 1), Born’s rule states that she will answer i (‘‘yes’’ or ‘‘no’’)
with probability 1, and her state of belief is thus unchanged. Such
vectors from which an answer can be given with certainty are
called ‘‘eigenvectors’’, and their set is the ‘‘eigenspace’’, for the
‘‘eigenvalue’’ i. In this model, all eigenspaces are of dimension 1,
and are called ‘‘rays’’ (equivalently, one can say that the eigenvalue
is not degenerate), since it has been supposed that an answer is
represented by a vector, and not by several independent vectors;
this will be of decisive importance in the next section. Another
consequence of the projection postulate is that, once an agent has
answered i to question A, shewill answer iwith probability 1 to the
same question A if it is posed again just afterwards.4

Such a quantum-like model displays order features. Compare
for instance p(a0, b0), the probability to answer 0 to question A
and then 0 to question B, and p(b0, a0), the probability to give the
same answers but in the reverse order. To compute p(a0, b0), one
can project the initial state on |a0⟩ without normalizing the re-
sult, then project the result on |b0⟩, still without normalizing, and
take the squared modulus of the final result.5 In other words, to

4 Of course, this is not true if another question, say B, is posed in-between.
5 Proof.Note p(yj|xi) the probability to answer j to question Y given that question

X has been answered with i. After the answer xi , the state is λ|xi⟩ with |λ| = 1,
so p(yj|xi) = |⟨yj|xi⟩|2 . Note p(xi) the probability to answer i to question X when
this question is asked first. p(a0, b0) = p(a0) · p(b0|a0) = |⟨a0|ψ⟩|

2
· |⟨b0|a0⟩|2 =

|⟨a0|ψ⟩·⟨b0|a0⟩|2 = |⟨b0|a′

0⟩|
2 , where |a′

0⟩ = ⟨a0|ψ⟩|a0⟩. Since |a′

0⟩ is |ψ⟩ projected
onto |a0⟩ and not normalized, computing |⟨b0|a′

0⟩|
2 means that |a′

0⟩ is projected
onto |b0⟩ and not normalized, before the squared modulus is computed. �
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Fig. 1. (Left:) The basis vectors |b0⟩ and |b1⟩ can be decomposed on the other basis vectors |a0⟩ and |a1⟩, so as to be expressed as in Eqs. (1) and (2). The scalar products are
either equal to cos δ or to sin δ. (Right:) The state vector |ψ⟩ can be expressed in the two orthonormal bases (|a0⟩, |a1⟩) and (|b0⟩, |b1⟩). These figures assume the special case
of a Hilbert space on real numbers.
Fig. 2. The state vector |ψ⟩, projected first on |a0⟩ and then on |b0⟩, or first on
|b0⟩ and then on |a0⟩, gives different lengths. Consequently, the corresponding
probabilities p(a0, b0) and p(b0, a0) are different.

compare the two probabilities, one can just compare the length
of successive projections of |ψ⟩, first on |a0⟩ and then |b0⟩, or in
the reverse order. Fig. 2 shows that they are not necessary equal.
Because quantum-like models display these order features, it has
been naturally suggested that they can account for experimentally
documented order effects; Section 4 discusses several suchmodels.

3. Constraints: the grand reciprocity equations

Some general empirical predictions can be derived from the
non-degenerate model presented in the previous section.

3.1. Derivation of the grand reciprocity equations

Be xi and yj the answers an agent gives to two successive
questions X and Y , in one order or in the other (X may be equal
to Y , and i to j). Because of the projection postulate, the state just
after the answer xi (respectively yj) is λ|xi⟩ (respectively λ′

|yj⟩),
with (λ, λ′) ∈ C2 and |λ| = |λ′

| = 1. On the one hand,

p(yj|xi) = |⟨yj|(λ|xi⟩)|2 = |⟨yj|xi⟩|2. (7)

On the other hand,

p(xi|yj) = |⟨xi|(λ′
|yj⟩)|2 = |⟨xi|yj⟩|2. (8)

As indicated previously, ⟨yj|xi⟩ = ⟨xi|yj⟩∗, hence |⟨yj|xi⟩|2 =

|⟨xi|yj⟩|2, and so

p(yj|xi) = p(xi|yj). (9)

This equation is well-known in quantum mechanics, and is
called the law of reciprocity (cf. Peres, 1993, p. 35–36 and 56).
The only condition for this law is that the eigenvalues are not
degenerate.6 It is a quantum law: it is not verified in general by
a classical model, in which P(bj|ai) = P(ai|bj) × P(bj)/P(ai), so
P(bj|ai) ≠ P(ai|bj) as soon as P(bj) ≠ P(ai).

For quantum-like models of judgment, the law of reciprocity is
somehow well-known,7 but it has not been fully investigated. In
the case of our model, it can be instantiated in the following ways:

p(b0|a0) = p(a0|b0), (a)
p(b1|a0) = p(a0|b1), (b)
p(b0|a1) = p(a1|b0), (c)
p(b1|a1) = p(a1|b1). (d)

(10)

For each of these equations, the left member is about questions
posed in one sense (A-then-B), while the rightmember is about the
other sense (B-then-A). This set of equations is actually equivalent
to another set, in which each equation is about one order of
questions:

p(b0|a0) = p(b1|a1), (a)
p(a0|b0) = p(a1|b1), (b)
p(b1|a0) = p(b0|a1), (c)
p(a0|b1) = p(a1|b0). (d)

(11)

Here’s a proof of the first equation (others are similar):
p(b0|a0) = 1 − p(b1|a0) because there are only two possible
answers (b0 and b1) to question B; then 1−p(b1|a0) = 1−p(a0|b1)
because of Eq. (10)(b); then 1 − p(a0|b1) = p(a1|b1) because
there are only two possible answers to question A; then p(a1|b1) =

p(b1|a1) because of Eq. (10)(d).
This set of equations (11)(a)–(d) shows that there exist some

equations that a quantum-like model must satisfy even if the
questions are not reversed, although the reciprocity law (Eq. (9)) is
originally about questions in reverse orders. The reciprocity law
actually gives some constraints on one unchanged experimental

6 If the eigenvalues are degenerate, i.e. if the eigenspaces are of dimension greater
than 1, then the projection postulate is generalized in the following way: the
agent’s belief state just after the answer xi is the normalized projection of her
belief state prior to the question onto the eigenspace corresponding to her answer.
This eigenspace is the ray spanned by |xi⟩ if the eigenvalue is not degenerate, but
more generally it can be a plane or a hyperspace. Here is why the hypothesis of
non-degeneracy is necessary to the reciprocity law. Suppose for simplicity that the
Hilbert space is on the real numbers. Suppose that the eigenspace for the eigenvalue
0 for question A is a ray, while the eigenspace for the eigenvalue 0 for B is a plane,
with an angle π/4 between them. Once the answer 0 is obtained from question A,
the state vector is on the ray, and if |a0⟩ is projected onto the plane, then there is
by hypothesis an angle of π/4, so p(b0|a0) = cos2(π/4). Now, once the answer
0 is obtained from question B, the state vector can be anywhere in the plane, for
instance with a right angle to the ray, so p(a0|b0) can be null. The reciprocity law
does not hold anymore.
7 Cf. Franco (2009, 417–418), Wang and Busemeyer (2013, 697–698), Busemeyer

et al. (2011, 197), Pothos and Busemeyer (2013, 317), Wang et al. (2014, 5).
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setup too, when instantiated for all cases. The equivalence of the
two sets of equations (reversing-the-order, Eq. (10)(a)–(d), and
not-reversing-the-order, Eq. (11)(a)–(d)) suggests that there is
nothing special about equations which compare reversed orders.

Eq. (11)(a) is equal to Eq. (11)(b), because of Eq. (10)(a) or
(10)(d); similarly for Eqs. (11)(c) and (11)(d). So, a new set of
equations, that we call the Grand Reciprocity equations, or just the
GR equations, can be written: p(b0|a0) = p(a0|b0) = p(b1|a1) = p(a1|b1), (a)

p(b1|a0) = p(a0|b1) = p(b0|a1) = p(a1|b0). (b)
(12)

This set of equations is equivalent to either of the two previous
sets, but it should be preferred as its form is more explicit. It is
also equivalent to the reciprocity law itself, because it states it for
all possible cases in the model. Further, Eqs. (12)(a) and (12)(b)
are equivalent to one another, because p(y0|xi) + p(y1|xi) = 1 by
definition. So, each of these equations is actually equivalent to the
other sets and to the reciprocity law itself.

To the best of our knowledge, these equations have not yet
been fully written in the literature on quantum-like models. Many
papers note the law of reciprocity and the consequences for
conditional probabilities (cf. footnote 7), but always for one order
of the questions only.

The GR equations set the value for all possible conditional prob-
abilities: among the eight quantities that can be experimentally
measured, there is just one free real parameter. In the case of a real
Hilbert space, the origin of this constraint is to be found in the δ
angle between the two bases (cf. Fig. 3).

3.2. Generalizations

Let us now consider some generalizations of the GR equations
to caseswhich go beyond the non-degenerate quantum-likemodel
presented in Section 2.

First, the GR equations have been shown for a single agent; by
averaging, they obviously still hold for any population of N agents,
with various initial state vectors |ψk⟩, with k ∈ {1, . . . ,N}. Another
possible generalization concerns the basis vectors: what if they
depend on the agent k, with |a0,k⟩, |a1,k⟩, |b0,k⟩, |b1,k⟩?8 In this case,
the above GR equations can be established for each agent k in the
same way as previously, except that the terms are now indexed
for each agent k, in the form pk(x|y) = pk(z|t) (or respectively
= 1 − pk(z|t)), with (x, y, z, t) ∈ {a0,k, a1,k, b0,k, b1,k}4. For the
whole population, p(x|y) is now defined by the average of the
statistical probabilities pk on all N agents:

p(x|y) =
1
N
Σkpk(x|y), (13)

and similarly for p(z|t). But because for any k, pk(x|y) = pk(z|t),
then

1
N
Σkpk(x|y) =

1
N
Σkpk(z|t). (14)

So finally p(x|y) = p(z|t) (or respectively = 1− p(z|t)), and the GR
equations hold for the whole population even if the basis vectors
depend on the agent. This is just because it holds for any agent, and
that the average on the agents is a linear operation that enables to
keep the form of the equations.

Also, quantum systems can be described with more general
mixed states, instead of pure states. Here is the difference: |ψ⟩

has been supposed to be equal to a vector from the Hilbert space,

8 This situation is considered for instance by Busemeyer et al. (2011) p. 212.
i.e. a pure state, and this supposes that the modeler knows to
which vector the state is equal. But there are cases in which the
modeler does not know exactly to which vector the state is equal
(for instance, she only knows that there are 50% chances that the
state is |a0⟩, and 50% chances that it is |a1⟩). To express this, the
belief state is considered as a statistical ensemble of pure states,
and it is represented by a density matrix (for instance, we write
ρ = 0.5|a0⟩⟨a0| + 0.5|a1⟩⟨a1| for the above case). The question
is then: are the GR equations valid for pure states only, or also for
mixed states? For both, because no particular hypothesis has been
made on the state before the first question is asked. What matters
for the demonstration is the state after the first question, and it is
doomed to be the corresponding eigenvector (up to a phase factor),
whether the belief state was described as a statistical mixture or
not before the question was asked. So, the GR equations hold even
if mixed states are assumed, which can prove very powerful.

The GR equations apply to a model with 2 questions with
2 possible answers each, but one could also consider a larger
set of questions. Consider a model with q questions A, B, C, . . .
that are asked in a row, in various orders, each with 2 possible
non-degenerate answers, in a Hilbert space of dimension 2. For
the questions considered 2 by 2, the reciprocity law (Eq. (9))
holds, since what matters is that answers are represented by 1D
subspaces, and so the GR equations hold too. This gives a set of q ·

(q−1)/2 GR equations that this model must satisfy. Consider now
a model with 2 questions, each with r possible answers, with non-
degenerate eigenvalues, in a complex Hilbert space of dimension r .
The reciprocity law still holds in this case, and the GR equations
hold for each couple of indexes (i, j) ∈ {1, . . . , r}2. Overall, the GR
equations can be generalized to apply for models with q questions
and r possible non-degenerate answers.

The hypothesis that eigenvalues are non-degenerate, i.e. that
eigenspaces are of dimension 1, can be relaxed in some cases.
Suppose a model M with eigenspaces of dimensions greater than
1 is empirically equivalent to a model M ′ with eigenspaces of
dimension 1. So to speak, the supplementary dimensions of M
are theoretically useless, and empirically meaningless. As the GR
equations hold for M ′, they will also hold for M , to which it is
equivalent. So, more generally, the GR equations hold for models
which have eigenspaces of dimension 1, or which are reducible
(i.e. equivalent) to it.

These results may have a larger impact still. Suppose that
there exists a set of elementary questions, the answers of which
would be represented by non-degenerate eigenspaces, i.e. rays.
These elementary rays would define the fundamental basis belief
states, on which any belief could be decomposed. The number
of such elementary rays would define the dimensionality of the
Hilbert space representing human beliefs. Such an assumption is
widespread in the quantum-like literature. For instance, a similar
idea is expressed by Pothos and Busemeyer about emotions:

‘‘one-dimensional sub-spaces (called rays) in the vector space
would correspond to the most elementary emotions possible.
The number of unique elementary emotions and their relation
to each other determine the overall dimensionality of the vector
space. Also, more general emotions, such as happiness, would
be represented by subspaces of higher dimensionality’’. (Pothos
and Busemeyer, 2013, 258).

Generalized GR equations would hold for such elementary
questions. Then, all models with degenerate eigenspaces would
just be coarse-grained models, which could be refined with more
elementary questions and rays. For instance, a degenerate answer
represented by a plane combines two elementary dimensions
because it fails to distinguish between them. As a consequence, the
meaning of a degenerate answer could be specified through more
specific elementary answers. More importantly, the degenerate
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Fig. 3. A graphical illustration of the Grand Reciprocity equations, in the special case of a real Hilbert space. A δ angle is enough to define the two orthonormal bases relatively
from one another. Then, conditional probabilities, of the form |⟨xi|yj⟩|2 , are either equal to cos2(δ) (Left) or to sin2(δ) (Right), with a sum to 1.
model could actually be tested on these fundamental questions,
with our GR equations or their generalized versions with q
questions and r answers. In other words, if elementary questions
existed – and it seems to be ausual assumption in the quantum-like
literature – any model of the kind presented in Section 2, but with
non-degenerate answers or not, could be testedwith GR equations.
This is of fantastic interest, as it enables to test any model, and it
has never been noted before. We shall come back on this point in
Section 6.

3.3. Link with double stochasticity

Part of the GR equations is actually known in the literature as
the requirement of ‘‘double stochasticity’’. Let us analyze the links
between the two constraints.

Define the change of basis matrix µa,b between the two bases
(|a0⟩, |a1⟩) and (|b0⟩, |b1⟩), as:

µa,b
=


⟨a0|b0⟩ ⟨a0|b1⟩
⟨a1|b0⟩ ⟨a1|b1⟩


. (15)

As the two bases are orthonormal by hypothesis, this matrix is
unitary. From it, a transition matrix T a,b can be defined by T a,b

ij =

|µ
a,b
ij |

2:

T a,b
=


|⟨a0|b0⟩|2 |⟨a0|b1⟩|2

|⟨a1|b0⟩|2 |⟨a1|b1⟩|2


=


p(a0|b0) p(a0|b1)
p(a1|b0) p(a1|b1)


. (16)

T a,b contains the probabilities for the answers to question A given
the previous answer to question B (T a,b could be also called T A|B).

Transitionmatrices are left stochastic: they are squarematrices
of non-negative real numbers, of which each column sums to 1.
This expresses the fact that, once an answer has been given to
the first question, there is a probability 1 that one of the answers
is given to the second question. A matrix is said to be doubly
stochastic in case all columns and all rows sum to 1. Saying that
T a,b is doubly stochasticity amounts to the following equations:

p(a0|b0)+ p(a1|b0) = 1 (a)
p(a0|b1)+ p(a1|b1) = 1 (b)
p(a0|b0)+ p(a0|b1) = 1 (c)
p(a1|b0)+ p(a1|b1) = 1. (d)

(17)

Subtracting these equations one by one gives Eqs. (11)(b) and
(11)(d)—but no more.9 So, one gets one half of the reciprocity

9 Eqs. (11)(a) and (11)(c) cannot be derived from Eq. (17)(a)–(d): as they bear on
questions asked in different orders, it is easy to imagine a case in which the former
are false, whereas the latter are true.
relations. This should be no surprise: the double stochasticity
constraint bears on only one experiment, when the order of the
questions is the same, and cannot be informative about the reverse
order. It is easy to see that if the double stochasticity of the reverse
transition matrix (T b,a) is assumed, then one gets the other half
of our reciprocity relations (Eqs. (11)(a) and (11)(c)), and then
also the GR equations. Conversely, our GR equations imply double
stochasticity for both transition matrices. So, the GR equations are
equivalent to the requirement of double stochasticity for transition
matrices in both senses.

In the literature, double stochasticity is a well-known property
of transition matrices for quantum-like non-degenerate models,10
but it has generally been required for one transition matrix
only (i.e. for questions posed in one order). An exception is
Khrennikov (2010, 24 and 36), who studies double stochasticity
for transition matrices in both senses, and shows that it must be
verified by quantum-like probability models with non-degenerate
eigenvalues, i.e. like in our general model. However, he does not
insist on testing experimentally this property in a systematic way,
as we shall do here, with important consequences for existing
models.

Although the GR equations are equivalent to double stochastic-
ity in both orders for transition matrices, there are several reasons
why the former formulation should be preferred, both pragmati-
cally and theoretically. To test double stochasticity, one first needs
to write equations like Eq. (17)(a)–(d). But such equations are not
independent, so it complicates the statistical tests of significance.
Or in order not to test useless equations, some work needs to be
done beforehand to find the independent equations. Actually, un-
tangling the equations would just lead to the GR equations, which
are directly usable. Overall, the GR equations can be considered as
the pragmatic form one should use to test double stochasticity in
both orders. They also clearly show that two set of Eqs. (12)(a) and
(12)(b) are equivalent, and that one needs to pick only the corre-
sponding data. Also, the GR equations show at first sight that there
is only one free parameter among all the possible conditional prob-
abilities, while this is not transparent from the double stochastic-
ity requirement. More theoretically, the GR equations are directly
linked with a central mathematical property of the scalar product
in the model, making it clear why it holds. On the other hand, the
reason why double stochasticity should hold in this model is more
obscure. Finally, the GR equations connect with a fundamental law
of quantummechanics, namely the law of reciprocity, which helps
to understand why it holds only in the case of non-degenerate
eigenvalues, like in quantum mechanics.

10 Cf. for instance Busemeyer and Bruza (2012, 53–54), Busemeyer et al. (2009),
Pothos and Busemeyer (2013, 269).
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3.4. Link with the QQ equality

Wang and Busemeyer (2013) and Wang et al. (2014) defend
the test of a relation called ‘‘the QQ equality’’ that they introduce.
This equality holds for the non-degenerate quantum-like model
presented in Section 2, and also if eigenvalues were degenerate.
In the case of non-degenerate eigenvalues, it can be derived from
our GR equations, as can be shown in the following way.

With the notations of our model (and adding the notation
pXY (zi) for the probability to answer i to question Z , when posed
in the order X-then-Y ), the QQ equality (Wang and Busemeyer,
2013, 698) can be written as:

p(a0, b1)+ p(a1, b0) = p(b0, a1)+ p(b1, a0), (18)

that is,

p(b1|a0)pAB(a0)+ p(b0|a1)pAB(a1)
= p(a1|b0)pBA(b0)+ p(a0|b1)pBA(b1). (19)

Because pXY (z0)+ pXY (z1) = 1, it is equivalent to:

p(b1|a0)pAB(a0)+ p(b0|a1)[1 − pAB(a0)]
= p(a1|b0)pBA(b0)+ p(a0|b1)[1 − pBA(b0)], (20)

which can be rewritten as:

[p(b1|a0)− p(b0|a1)]pAB(a0)+ p(b0|a1)
= [p(a1|b0)− p(a0|b1)]pBA(b0)+ p(a0|b1). (21)

The square brackets are null because of Eqs. (11)(c) and (11)(d),
and the two remaining terms are equal because of Eq. (12)(b).
So, the QQ equality is demonstrated from the GR equations when
eigenspaces are not degenerate.

The GR equations cannot be derived in general from the QQ
equality: below, Section 5 gives an example of data which satisfy
the QQ equality, but not our GR equations. So the two tests are
not equivalent. They test different things: if a data set does not
satisfy the GR equations, the non-degenerate quantum-like model
of Section2 cannot apply to it (it remains anopenquestionwhether
a degenerate model would); if a data set does not satisfy the QQ
equality, the non-degenerate quantum-like model of Section 2
cannot apply to it, and a degenerate version of it could not either. In
other words, a non-degenerate quantum-like model must satisfy
both the GR equations and the QQ equality, and a degenerate
quantum-like model must satisfy the QQ equality.

3.5. Testing the grand reciprocity equations

Why test these GR equations? As noted before, the quantum-
like literature often consider models that can be either non-
degenerate (answers are represented by rays) or degenerate
(answers are represented by subspaces of any dimension). So,
a first reason to test the GR equations is simplicity: if a non-
degeneratemodel is empirically adequate, why bother considering
a degenerate one? The possibility to have a non-degenerate model
should be settled, and the GR test exactly enables it. Conversely, for
models that are proposed only in a non-degenerate version, the GR
equations should be verified without condition, and they provide
a decisive test of empirical adequacy. So, in any case, we suggest
that (one of) the GR equation(s) be directly tested experimentally
for any quantum-like model that contains the model presented
in Section 2, as a particular case only or not. ‘‘Directly tested’’
here means that what should be measured are the conditional
probabilities that are present in these equations, or data that
enable their computation.

On a more pragmatic ground, the needed data are basic ones,
easy to get experimentally. The equations are ready-to-use ones,
simpler than the test of double stochasticity (cf. Section 3.3). More
theoretically, each GR equation is equivalent to a fundamental
property of quantum-like models, namely the law of reciprocity. It
is not just a consequence of it but it is just the expression of this
law for all possible cases in the model. Testing the GR equations
is exactly testing the reciprocity law (testing the QQ equality,
which is only a consequence of the reciprocity law, amounts to
another test). The benefit is that testing the GR equations is more
economical: they state that only 4 conditional probabilities need to
be compared to test the law in general. Another reason to test the
GR equations is that a classical model does not verify them; so they
can be seen as a test of the quantum-like character of the data.11

A last point in favor of the test is that, when some empirical
data verify the GR equations, it can be used to define a quantum-
like model in a real Hilbert space. Define p = p(a0|b0); because of
the GR equations, any conditional probability p(xi|yj) is either p or
1 − p, and Eq. (16) becomes:

T a,b
=


p 1 − p

1 − p p


. (22)

On the other hand, a model from a real Hilbert space (like in Fig. 1)
has a change of basis matrix

µa,b
=


cos δ − sin δ
sin δ cos δ


, (23)

and hence a transition matrix

T a,b
=


cos2 δ sin2 δ

sin2 δ cos2 δ


. (24)

Taking δ = arccos(
√
p) enables the real model to account for the

data of conditional probabilities. To put it another way, checking
the empirically validity of the GR equations enables at the same
time to define the two bases relatively from one another.

Note that testing the GR equations require that the experiment
be conducted in both question orders (A-then-B and B-then-A). If
only one question order is studied, a test can still be performed, but
only on half of the equations. So, whenever a quantum-like model
of the kind depicted here is proposed to account for the results of
a succession of two questions in one order only, then the model
should also be tested for the reverse order.

4. Applying the GR equations to non-degenerate (versions of)
existing models

The non-degenerate quantum-like model that we introduced
in Section 2 was intended to serve as a concise presentation for
several models from the literature. In this section, we discuss in
detail the relation between our model and existing ones, in order
to clarify whether the latter should verify the GR equations. Recall
that satisfying the GR equations is required in general for non-
degenerate models only. So, if an existing model is proposed in
themost general case either as non-degenerate or degenerate, then
the GR equations apply only to the non-degenerate version of the
model, not to its degenerate version.

Consider first Conte et al. (2009), who propose a quantum-like
model to account for order effects in mental states during visual
perception of ambiguous figures. Their model can be cast into
the lines of our general model: the two dichotomous questions
or tests are also called A and B, and the probabilities of the
answers are noted p(A = +), p(A = −), p(B = +) and
p(B = +), corresponding to our p(a0), p(a1), p(b0) and p(b1). The

11 Indeed, the GR equations are equivalent to the reciprocity law, which is not true
in general for classical models (cf. Section 3.1). Note that classical models which
satisfy the GR equations are uninteresting: all P(xi) and all P(xi|yj) are equal to 0.5.
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questions concern visual perception of ambiguous figures, and a
vector state, noted here φ (instead of our ψ) represents the state
of consciousness about the perception. It belongs to a complex
Hilbert space, and an answer is represented by a one-dimensional
subspace (this is implicit in their formula (3)). The usual Born
rule makes the link with probabilities. The model also involves a
projection postulate: during perception, the ‘‘potential’’ state of
consciousness is collapsed onto ‘‘an actual or manifest state of
consciousness’’ (p. 6 and 7). Note however a slight difference: for
Conte et al., the projection of the state arises during perception
of the figure, not during answering a question. But as the latter
quickly follows the former, and as an agent answers a question
only once her perception has stabilized, this does not make any
difference in practice. Overall, Conte et al. (2009)’s model matches
our general model in all respects, as it supposes that eigenspaces
are of dimension 1. So, it has to obey the GR equations.

Consider now the model proposed by Wang and Busemeyer
(2013), called the QQ model, which is to account for several
types of order effects about judgments on various topics (politics,
sports, society, etc.). The clear presentation of the model in their
Section 2, together with their geometric approach which provides
figures similar to ours (in the case of a real Hilbert space), easily
enables to see that it encompasses the non-degenerate model of
Section 2. However, Wang and Busemeyer’s model is more general
and allows for an answer to be represented either with a subspace
of dimension 1 (non-degenerate version), or with a subspace of
dimension larger than 1 (degenerate version). The GR equations
apply only to the former version, as a special case. For instance,
they apply to figures 1 and 2 (p. 4 and 5), which represent ‘‘a two-
dimensional example of the quantum-likemodel of question order
effects’’. Hence, the GR test will exactly fit here the aim we set
it in the introduction: within this general model, specify whether
non-degenerate model can be sufficient, or degenerate model are
required.

Wang and Busemeyer’s general model is also at the basis of
two other presentations: in Busemeyer and Bruza’s 2012 book
(p. 99–116), and in the review article of Pothos and Busemeyer
(2013). Here too, the model can be non-degenerate or degenerate,
and the GR equations apply with the same conditions: only to the
special case of the non-degenerate version.

Atmanspacher and Römer (2012, p. 277) make the suggestion
that Wang and Busemeyer’s model could be extended to mixed
states, instead of just pure states. Although this is an interesting
theoretical possibility, it is clear that it cannot be used to avoid
the GR equations, as they are valid for pure as for mixed states (cf.
Section 3.2).

Building on the paper of Wang and Busemeyer (2013), Wang
et al. (2014) take up the same quantum-likemodel for order effect,
in order to apply it to amuch larger set of experiments. Here again,
answers are supposed to be represented with subspaces of any
dimension. So, the GR equations apply only to the special case of
the model in its non-degenerate version, i.e. when answers are
represented with rays as in the model of Section 2.

5. An empirical glimpse: the GR tests

The previous section has listed several cases in which the GR
equations can be tested. For all cases but Conte et al. (2009), the
models have been proposed for any N dimensions, i.e. as either
non-degenerate or degenerate. Then, the GR equations can test
the special case of the non-degenerate version of these models,
in order to determine whether this simplest case is sufficient, or
if the more general degenerate models are required. This section is
concernedwith performing these empirical GR tests. They are done
using the empirical data that are provided in the papers, andwhich
come from either laboratory or field experiments. To study these
Fig. 4. Distribution of number of subjects per experiment.

empirical data, we divide them into two sets, according to the topic
and the authors: first, in Sections 5.1–5.3, we consider the data on
experiments about judgment on social or political questions,which
enable to test the model first proposed by Wang and Busemeyer
(2013) and considered by Busemeyer and Bruza (2012), Pothos and
Busemeyer (2013), and Wang et al. (2014); second, in Section 5.4,
the data concern an experiment about visual perception, and we
test the model proposed by Conte et al. (2009).

5.1. First data set

Our first data set gathers 72 experiments on order effects,
with 70 national surveys made in the USA plus 2 laboratory
experiments:

– 66 national surveys from the Pew Research Center run between
2001 and 2011 about politics, religion, economic policy and
so on, considered in Wang et al. (2014) (noted in Table 1 as
experiments 1 to 66);

– 3 surveys fromMoore (2002) concerning Gallup public opinion
polls (noted as experiments 67–69), which are considered in
Wang and Busemeyer (2013) and in Wang et al. (2014);

– 2 laboratory experiments conducted by Wang and Busemeyer
(2013). In the first experiment, the authors replicate in a
laboratory setting the experiment proposed by Moore (2002)
about racial hostility, whereas, in the second one, they replicate
the survey of Wilsonet al. (2008) (experiments 70 and 71) ;

– one further Gallup survey reported by Schuman and Presser
(1981), also considered in Wang et al. (2014) (experiment 72).

Fig. 4 reports the box plot of the distribution of the total number
of subjects per experiment. The median experiment (741 subjects)
is thus supposed to involve half of the samples (about 370 subjects)
in the A-then-B treatment and the remaining half in the B-then-A
treatment. The circle on the left part of the box-plot, outside the
left whisker, pinpoints the two laboratory experiments 70 and 71,
which involve the smallest sample, that is, 228 subjects.

Each experiment can be described according to the following
commonmodel and notations: two response categorical variables,

– the Bernoulli random variable A ∈ {a0, a1} that represents the
possible replies (respectively ‘‘yes’’ or ‘‘no’’) to the dichotomous
question A,

– the Bernoulli random variable B ∈ {b0, b1} that represents the
possible replies (respectively ‘‘yes’’ or ‘‘no’’) to the dichotomous
question B,

and one explanatory categorical variables,

– the variable O ∈ {0, 1} that represents the order of appearance
of the questions—0 for theA-then-B order and 1 for the B-then-A
order.

Empirically, what is observed is not conditional probabilities like
p(bj|ai), but joint frequencies n(ai, bj), that is, the outcome of the
counting process of the people responding i to the first question
A and then j to the second question B (the order matters in
this notation: n(bj, ai) refers to the B-then-A experiment). This
information can be reported as a contingency table (Table 2).

Validity conditions for hypothesis testing are sensitive to the
number of counts—it is commonly required at least 5 counts for
the joint frequencies. To this end, Table 3 reports some statistical
information about the distributions of the joint frequencies over
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Table 1
Questions of the experiments included in the first data set.

1–26 (26 experiments).

A. Do you approve or disapprove of the way Bush/Obama is handling the job as President?
B. All in all, are you satisfied or dissatisfied with the way things are going in this country today?

27–41 (15 experiments).

A. Do you approve or disapprove of the job the Republican leaders in Congress are doing?
B. Do you approve or disapprove of the job the Democratic leaders in Congress are doing?

42–66 (25 experiments).

These experiments include diverse questions covering topics, from religious beliefs to support to economic policy.

67.

A. Do you generally think Bill Clinton is honest and trustworthy?
B. Do you generally think Al Gore is honest and trustworthy?

68.

A. Do you think Newt Gingrich is honest and trustworthy?
B. Do you think Bob Dole is honest and trustworthy?

69 and 70.

A. Do you think that only a few or many white people dislike black people?
B. Do you think that only a few or many black people dislike white people?

71.

A. Do you generally favor or oppose affirmative action (AA) programs for racial minorities?
B. Do you generally favor or oppose affirmative action (AA) programs for women?

72.

A. Do you think it should be possible for a pregnant woman to obtain a legal abortion if she is married and does not want any more children?
B. Do you think it should be possible for a pregnant woman to obtain a legal abortion if there is a strong chance of serious defect in the baby?
Table 2
The contingency table of a generic experiment.

O = 0 O = 1
B = b0 B = b1 B = b0 B = b1

A = a0 n(a0, b0) n(a0, b1) n(b0, a0) n(b1, a0)
A = a1 n(a1, b0) n(a1, b1) n(b0, a1) n(b1, a1)

the 72 experiments. In particular, Table 3 focuses on the region of
the distributions corresponding to small values: the rows report
the first decile of each distribution (D1-10%), the smallest number
of subjects occurred in one experiment (min) and the number
of experiments presenting a joint frequency value lower than
5. Summarizing, more than 90% of the experiments have joint
frequency values greater or equal to 5, 5 out of 8 joint frequencies
never present values less than 5, and only 6 experiments present
for only one joint frequency a value smaller than 5.

5.2. The statistical test

The aim of our statistical study is to study the validity of
quantum-like modeling on order effect experiments by testing the
theoretical GR equations (Eqs. (12)(a) and (12)(b)). As they are
equivalent, we focus on the first set of equations,

p(b0|a0) = p(a0|b0) = p(b1|a1) = p(a1|b1). (25)

The conditional probabilities, which are not observable, are
estimated by considering conditional relative frequencies f (ai|bj)
and f (bj|ai), under the hypothesis that relative frequencies
converge to probabilities when the number of people involved in
the experiment tends to infinity. Eq. (25) is equivalent to 6 two-by-
two comparisons:

T1: f (b0|a0) = f (a0|b0), (a)
T2: f (b0|a0) = f (b1|a1), (b)
T3: f (b0|a0) = f (a1|b1), (c)
T4: f (a0|b0) = f (b1|a1), (d)
T5: f (a0|b0) = f (a1|b1), (e)
T6: f (b1|a1) = f (a1|b1). (f)

(26)
Each test is to compare two conditional relative frequencies y
and x, with the null hypothesis that they are equal.12 From a sta-
tistical viewpoint, it is convenient to perform an equivalent test
in terms of logits: log


y

1−y


= log

 x
1−x


, or even whether the

natural logarithm of the odds ratio is equal to zero: log(OR) =

log


x(1−y)
(1−x)y


= 0. The sampling distribution of the log odds ratio

X , under the hypothesis of the large sample approximation, is ap-
proximately normal: X ∼ N(log(OR), σ 2). Instead of conditional
relative frequencies, the log odds ratio can be easily expressed
equivalently in terms of joint frequencies (cf. Appendix A). For in-
stance, instead of computing the first statistical test (Eq. (26)(a)),
we can perform the following test:

log(OR) = log

n(a0, b0)n(b0, a1)
n(a0, b1)n(b0, a0)


= 0. (27)

A continuity correction is also applied, because the normal approx-
imation to the binomial is used, which is effective in particular for
small values of n(ai, bj) or n(bj, ai). The above test becomes:

log(OR) = log

(n(a0, b0)+ 0.5)(n(b0, a1)+ 0.5)
(n(a0, b1)+ 0.5)(n(b0, a0)+ 0.5)


= 0. (28)

We suppose here that

log(OR)
SElogOR

∼ N(0, 1), (29)

where SElogOR is the standard error of the log odds ratio. It is esti-
mated as the square root of the sum of the inverse of all the joint

12 Note that there is some arbitrariness in the comparison of the number of a test
between two experiments, as it depends on our labeling of both ‘‘a/b’’ and ‘‘0/1’’. For
instance, an experiment which fails T1 would fail T6 if it were labeled differently,
and similarly for T2 with T5, and T3 with T4.
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Table 3
Descriptive statistics for the joint frequencies.

n(a0, b0) n(a0, b1) n(a1, b0) n(a1, b1) n(b0, a0) n(b0, a1) n(b1, a0) n(b1, a1)

D1 33 19 5 47 30 9 17 47
min 6 5 2 19 11 2 3 14
n < 5 0 0 4 0 0 1 1 0
Table 4
Descriptive statistics for the number of test
rejections per experiment.

Mean 3.63
Mode 4
Q3 (75%) 5
Median 4
Q1 (25%) 3
D1 (10%) 1

frequencies that are considered in the estimation of the OR:

SElogOR =


1

n(a0, b0)
+

1
n(b0, a1)

+
1

n(a0, b1)
+

1
n(b0, a0)

. (30)

Finally, a Bonferroni correction of the type I error is adopted be-
cause of the multiple comparisons (six). Note that this statistical
correction is a very conservative one, which means that it makes
false positive rejections much less liable to occur. Concretely, the
two-tailed test implies the null hypothesis of equality between the
two conditional frequencies at the K% significance level is rejected
if:

p-value = 2 ·


1 − CDFstdNorm

 log(OR)SElogOR

 ≤
K
100

(31)

where CDFstdNorm is the cumulative distribution function of the
standard normal distribution (mean = 0 and standard devia-
tion = 1). Finally,we test by estimating the adjusted p-value based
on the Bonferroni correction, with

adjusted p-value = 6 · p-value. (32)

5.3. Results on the first data set

Table 7 in Appendix B reports the adjusted p-values of the
tests (columns) for each of the 72 experiments (rows). Recall that
only one rejection of the six tests T1–T6 is sufficient for a non-
degenerate quantum-like model to be considered as empirically
inadequate. In this sense, satisfying 5 tests over 6 is not more
desirable than satisfying 1—this is an all-or-nothing problem, or
a ‘‘zero-or-non-zero’’ rejection matter.

First, let us take a general viewpoint on the rejection question.
Some summary statistics are provided in Table 4 relative to the
distribution of number of test rejections per experiment. The
rejection rate per experiment is high, above 3. The distribution
of the test rejections is highly skewed with respect to a uniform
distribution. More than 75% of the experiments (Q1—first quartile)
reject half or more than half of the 6 tests and both the median
and the mode are equal to 4. The key point is that the first decile
(D1) is equal to 1, that is, more than 90% of the experiments exhibit
at least one test rejection, thus confirming the hypothesis that
quantum-likemodeling inwhich onedimensional subspaces (rays)
represent answers to questions is not empirically adequate for the
experiments considered in this first data set.

Second, it is possible to have an individual analysis of
the experiments: as the last column of Table 7 (Appendix B)
reports the experiment identifier (exp ID) adopted in Table 1,
it is possible to track each question in the ranked-based list
of experiments. For each experimental protocol (laboratory or
Fig. 5. Scatterplot of the number of test rejections versus the size of the subject
pool. The red triangles pinpoint the 7 experiments with 0 test rejections, the green
plus (+) the two overlapping laboratory experiments. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

field experiments, Gallup or Pew Research Center surveys and
different authors), at least one experiment rejects at least one
test, which shows that the result of non-satisfaction is robust also
against experimental settings and questions. For instance, the two
laboratory experiments (70 and 71) of the data set exhibit one
test rejection—as they involve the smallest subject pools, one can
conjecture that a higher number of test rejections would occur
with more subjects involved.

7 out of the 72 experiments exhibit zero rejections. From
a statistical viewpoint, they all satisfy the validity condition
of the test in terms of joint frequency values, that is more
than 5 counts. These experiments have adjusted p-values for all
joint frequencies significantly greater than the 5% significance
level. Further investigation would be required to understand
the rationale of the occurrence of no test rejection in these
experiments, in order to exclude spurious statistical arguments. As
a first step, Fig. 5 plots the number of test rejections against the
size of the subject pool among the experiments. The plot suggests
that low subject pools (say, below 500) tend to reject less tests.
It also suggests that it would be interesting to replicate these 7
experimentswith a larger subject pool (say, 1000 or 1500), to check
whether they still verify all the tests.

An important point is however the following one: all 7 polls that
do satisfy all GR tests actually display no order effect (cf. Table 5).13
Yet, it is well-known that data sets that display no order effect
can be accounted for by classical models and that quantum-like
ones are not needed, whether degenerate or not. In other words,
in the 7 cases in which non-degenerate quantum-like models can
account for the data, quantum-likemodels are actually not needed.
Hence, in all the 72 polls considered in this first data set, no non-
degenerate quantum-like model is needed or, when needed, is
possible.

Let us now sum up the consequences for each paper. The 6
experiments considered in Wang and Busemeyer (2013) fail at
least one GR test, and thus we can safely say that they cannot
be accounted for with a non-degenerate quantum-like model.
For instance, their 2D figures with rays cannot be considered as
representations of the model for their data, but instead should

13 The data that can be obtained from Wang et al. (2014), together with their
statistical tests, easily enable to test the absence of an order effect.
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Table 5
p-values for the order effect tests performed over the 7 experiments that do satisfy
the GR equations. The null hypothesis of absence of order effect cannot be rejected.

Exp ID 26 27 42 43 44 47 51

p-value 0.33 0.85 0.17 0.62 0.94 0.18 0.38

be thought as an illustrative toy model. Of course, as Wang and
Busemeyer (2013) allow their model to be either degenerate or
non-degenerate, there remains the possibility to account for the
data with a degenerate version of the model, but our GR test is
not able to pronounce on that option (cf. Section 6 for a further
discussion).

Among the 66 extra experiments considered in Wang et al.
(2014), which all come from the PEW Research Center, a very large
majority, 59, fail at least one test and the same consequence holds:
they cannot be accounted for with a non-degenerate quantum-like
model either. Similarly, asWang et al. (2014) allow their models to
be either degenerate or non-degenerate, we do not claim here that
they are wrong but only that the non-degenerate versions are not
empirically adequate for these data—there remains the theoretical
possibility of degenerate versions of the model. 7 experiments
remain that can be accounted for with a non-degenerate model
(it would be interesting to replicate these experiments with a
larger number of subjects, to check whether this still holds), but
as they display no order effect, a quantum-like model is actually
not needed here and a classical model could account for them.

5.4. Second data set: Conte et al. (2009)

This section considers the experiments conducted by Conte
et al. (2009) about visual perception. The validity conditions of the
statistical test are not fullymet because the number of subjects per
experiment is around 60, posing the issue of statistical significance
for such a small sample. In particular, the statistical requirement of
at least 5 counts for each joint frequency is not always met in this
data set. However, for the sake of completeness, the statistical tests
are reported here.14

4 distinct experiments are performed, each comprising two
treatments involving a population of 19 to 22 year-old students.
The first treatment of each experiment involves a group of subjects
exposed only to test A, whereas the second one to test B and ‘‘soon
after’’ to test A. Only the second (52 subjects) and the third (64
subjects) experiments implement the same visual task (subjects
have to look at ambiguous figures of animal), but exchanging tests
A and B. Therefore, by considering only the treatment/group 2 of
these two experiments, the full GR equations can be tested.

Table 6 reports the adjusted p-values for the 6 tests. As the
third test is rejected at the 5% significance level, we can conclude
that a quantum-like non-degeneratemodel does not adequately fit
the experimental data.15 Here, too, the small size of the sample is
associated with a small number of test rejections. A more rigorous
empirical test of the GR equations would require a larger subject
pool. Anyway, as the model proposed by Conte et al. (2009) is
supposed to be only non-degenerate,we can already say that it fails
and cannot be said to be empirically adequate for the reported data.

14 An experiment similar to the one reported in Conte et al. (2009) is mentioned
in Khrennikov (2010, p. 79–86). However, we prefer to focus on the former because
in the latter (i) the number of subjects involved is still lower and (ii) as no reverse
order in the questions is considered, data is lacking to fully test the GR equations.
15 As the GR equations are not satisfied, neither is double-stochasticity in both
senses (cf. Section 3.3). Actually, the fact that the data of Conte et al. (2009) fail to
follow double-stochasticity is noted by Khrennikov (2010, 107 and 114).
Table 6
Experiments of Conte et al. (2009), adjusted p-values for the 6 tests. The rejection
is highlighted at the 5% significance level.

T1 T2 T3 T4 T5 T6

4.300 2.404 0.029 3.782 0.079 0.268

6. Discussion: degenerate models and the future of quantum-
like research on order effect

This paper has been concerned with the quantum-like models
that have been recently proposed to account for question order
effect. So far, many of them have been proposed in the most
general way, either as non-degenerate or as degenerate, while
it was suggested that degenerate models would be probably
required. We settled on the project to document this empirically,
by testing whether the non-degenerate versions of the models
could be sufficient. To this end, we have advocated the test of
novel predictions of the models, which are equivalent to the law
of reciprocity: the GR equations. After performing the test against
available data, the result is quite clear: non-degenerate models
are not an option, being not empirically adequate or not needed.
This confirms the suggestions from the literature (cf. footnote 1)
that they are too simple to be empirically adequate and should be
considered as toy models only.

As we have also made it clear, our results do not rule out all
quantum-like models: degenerate versions of the model, to which
the GR equations do not apply, have not been tested here. So, a
natural line of research is now to turn to degenerate quantum-
like models, where answers are represented by sub-spaces of
dimension 2 or larger. For instance, this is the solution adopted
by Busemeyer et al. (2009): after showing that a 2D quantum-
like model is not doubly stochastic (which implies that it does not
respect our GR equations), they switch to a 4D model.16

A strong suggestion in favor of this line of research comes
from the following fact. While the GR equations are violated on
a vast majority of experimental data sets, the QQ equality is
experimentally verified in all these cases (for the data considered
in Wang and Busemeyer, 2013 and Wang et al., 2014). Recall
that the QQ equality is valid for quantum-like models of the
kind considered here, whether they are degenerate or not (cf.
Section 3.4). It is just an empirical prediction they all have to
satisfy. Also, Wang and Busemeyer (2013, Section 6) have argued
that other kinds of models, like Bayesian or Markov ones, do not
generally satisfy the QQ equality, which gives good grounds to
think that some quantum-like model could account for the data
(cf. also Wang et al., 2014). As our present results exclude non-
degenerate models, the hopes are now on the degenerate ones.
Overall, the following testsmight bemade on a data set of question
order effect: (1) test the QQ equality; if it is violated, no quantum-
like model (of the sort considered in this paper) can account for
it; if it is not violated, it gives good grounds to think (but does not
prove) that a degenerate or non-degenerate quantum-like model
can account for it; (2) test the GR equations; if they are violated,
no non-degenerate quantum-like model can account for the data;
if they are not, one can.

However, in our view, the route of degenerate models is not
necessarily an easy one, and we would like to recommend that
some research be done about their empirical adequacy. First,

16 However, note that their 4D model is not just a degenerate version of their 2D
model, as it adds some time evolution of the state between the two questions. On
another question than order effect, namely the account for the conjunction fallacy,
Franco (2009) considers a non-degenerate 2D model only, while Busemeyer et al.
(2011) considers n-dimensional ones, which can be degenerate.
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degenerate models are not a priori freed from any constraint, and
this is the point on which we would like to insist very much.
One should not consider that, when a data set satisfies the QQ
equality and violates the GR equations, the solution safely lies in
a degenerate model. The moral of our paper should be taken as
insisting on the need to empirically test all quantum-like models.
Note that we do not just call for running more experiments; all
the tests we have done here have been made on available data,
and could have been made beforehand. Importantly, empirical
adequacy does not only mean applying to a vast number of
empirical cases, but also, for one experimental case,making correct
predictions in all respects, and for that it is crucial to pull the threads
of all possible predictions. Here, we have found simple and ready-
to-use tests for non-degenerate models, and we suspect that some
other constraints apply to degeneratemodels. Research is urgently
needed here to find general tests. At least, when a degenerate
model is proposed to account for some features of a data set, we
suggest that all parameters be specified and that serious efforts
be directed towards empirically testing this model by unveiling
experimental predictions that lie outside the feature one intends
to explain, so as to prevent later ‘‘bad surprises’’.

A promising way to test degenerate models has already been
indicated in the end of Section 3.2: degenerate eigenspaces
may actually encompass non-degenerate and more fundamen-
tal eigenspaces, that correspond to fundamental elementary
questions—to be identified. If such elementary questions exist, and
the quantum-like literature seems not to have doubts on that, all
degenerate models can actually be tested against generalized GR
equations for these more fundamental questions. In other words,
our GR test for non-degenerate models can possibly apply at a
fundamental level for all degenerate models, provided elementary
questions are identified.17 We are ready to admit, however, that
the fundamental dimensions and the corresponding tests can be
hard to uncover.

The need to specify the elementary dimensions of the Hilbert
space for degenerate models is also required by other arguments.
Introducing dimensions of degeneracy should be justified, so as not
to be accused of being just ad hoc. As Pothos and Busemeyer (2013,
p. 215)write, ‘‘Dimensionality is not a free parameter’’. In quantum
physics for instance, degeneration is usually theoretically justified
with a symmetry in the Hamiltonian, and the degeneration
can be experimentally removed by introducing some factor that
was not present (e.g., the spin degeneration is removed by
introducing a magnetic field). For quantum-like judgment models
as well, one should provide a similar theoretical justification
and an experimental way of removing the degeneration. In this
respect, the idea that there exists fundamental questions and
rays will certainly be helpful; the work is then to find out
which fundamental dimensions are hidden behind the degenerate
eigenspace.

Overall, all this argues against the view that switching to
degenerate models when GR equations are violated would be a
natural or unquestioned move to have and that it would solve all
problems. Instead, supplementary dimensions should be justified,
probably with elementary questions, and other predictions of the
model than those one intends to account for should be investigated
and tested, possibly with generalized GR equations.

Beyond degenerate quantum-like models in the flavor of the
model presented in Section 2, there are also other possible lines
of research around quantum ideas. For instance, Khrennikov has
proposed to consider hyperbolic Hilbert space models, instead

17 These generalized GR equations for elementary questions might help to
establish the constraints that degenerate models must satisfy in general, but for
non-elementary questions, that have been discussed in the above paragraph.
of complex ones like in this paper. Hyperbolic models enable
probabilities that are not constrained in the same way, and can
account for some data that are out of reach for complex quantum-
likemodels (see Khrennikov, 2010 for a synthesis). Also, other tools
than projectors, like POVMs, could be considered; or other axioms
of standard quantum-like models, like the projection postulate or
the Born rule, could be abandoned or modified.

To conclude, quantum-like models have brought to discussion
many provoking and seminal ideas, such as the hypotheses that
judgments or preferences might be undetermined instead of only
unknown, or that non-classical probabilities could be considered.
We have insisted on the need to empirically test existing models
for question order effect, and our results suggest that non-
degenerate quantum-like models should be considered more as
toy models than as empirically adequate models, in accordance
with suggestions from the literature, and that future investigations
should focus on degenerate models. In spite of the potential
difficulties that suchmodels face, there is plenty of room for future
research in the area, and besides our results can be taken as posing
a challenge liable to trigger a revival of the discussion on quantum-
like models of various sorts.
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Appendix A. Testing the equality of two conditional relative
frequencies

The statistical test is to compare two conditional relative
frequencies y and x, with the null hypothesis that they are equal.
The test is therefore

y = x, (33)

where both y and x are observed conditional relative frequencies.
Testing Eq. (33) is equivalent to test

log


y
1 − y


= log


x

1 − x


,

given that y and x are not equal to zero.
Alternatively, we can formulate the test in terms of the log odds

ratio (OR)

log(OR) = log

 y
1−y
x

1−x


= 0.

Now let us suppose that we want to test

f (a0|b0) = f (b0|a0). (34)

We can thus test the following condition:

log


f (a0|b0)
1 − f (a0|b0)


= log


f (b0|a0)

1 − f (b0|a0)


,

or

log

f (a0|b0)
f (a1|b0)


= log


f (b0|a0)
f (b1|a0)


.
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Table 7
Adjusted p-values of the 6 tests for the 72 experiments of the first data set. The
rejection is highlighted at the 5% significance level. The 7th column reports the
number of rejections (#R) at the 5% significance level, and the 8th one reports the
experiment ID (cf. Table 1).

T1 T2 T3 T4 T5 T6 #R at 5% exp ID

0.011 0.000 4.718 0.057 0.023 0.000 4 1
0.000 0.004 2.652 5.163 0.000 0.001 4 2
0.135 0.975 0.321 3.828 0.000 0.033 2 3
0.000 0.000 0.113 0.191 0.078 0.000 3 4
0.000 0.000 1.653 1.151 0.008 0.000 4 5
0.000 0.000 4.577 2.138 0.000 0.000 4 6
0.000 0.000 1.400 0.023 0.006 0.000 5 7
0.000 0.000 0.001 1.279 0.180 0.001 4 8
0.021 0.000 0.181 0.024 1.682 0.000 4 9
0.001 0.000 0.274 0.006 0.096 0.000 4 10
0.749 0.000 0.066 0.000 2.517 0.000 3 11
0.000 0.000 3.319 0.607 0.000 0.000 4 12
0.000 0.000 0.102 1.728 0.000 0.000 4 13
0.000 0.000 1.506 5.892 0.000 0.000 4 14
0.000 0.000 0.002 1.050 0.000 0.000 5 15
0.000 0.000 0.032 0.033 0.000 0.000 6 16
0.000 0.000 0.000 0.014 0.000 0.000 6 17
0.000 0.000 0.000 0.001 0.002 0.000 6 18
0.000 0.000 0.004 0.019 0.000 0.000 6 19
0.000 0.000 0.535 0.082 0.001 0.000 4 20
0.000 0.000 0.000 0.000 0.000 0.000 6 21
0.000 0.000 0.001 0.000 0.354 0.000 5 22
0.000 0.000 0.000 0.000 0.025 0.000 6 23
0.000 0.000 0.107 0.037 0.000 0.000 5 24
0.000 0.000 0.000 0.000 0.002 0.000 6 25
4.172 4.213 1.406 2.708 2.720 0.728 0 26
5.811 4.289 1.423 4.154 1.408 2.316 0 27
4.261 0.150 0.020 0.450 0.096 3.540 1 28
1.557 0.039 0.072 0.001 0.003 4.611 3 29
5.368 0.026 0.070 0.001 0.001 2.092 3 30
0.135 1.870 0.427 0.005 0.000 2.286 2 31
0.912 0.000 0.000 0.000 0.000 3.896 4 32
0.011 2.285 0.002 0.068 0.000 0.000 4 33
0.012 1.420 0.002 0.000 0.000 0.021 5 34
0.580 0.074 0.000 0.000 0.000 0.038 4 35
1.093 1.382 0.041 0.035 0.000 0.427 3 36
2.913 0.073 0.000 0.001 0.000 0.107 3 37
0.179 0.000 0.000 0.000 0.000 1.062 4 38
1.373 0.000 0.000 0.000 0.000 2.482 4 39
4.564 0.000 0.000 0.000 0.000 4.084 4 40
1.936 0.000 0.000 0.000 0.000 5.716 4 41
5.188 1.343 1.723 1.649 2.101 5.229 0 42
2.651 5.452 5.452 2.212 2.212 6.000 0 43
3.965 4.249 3.554 2.414 1.999 5.064 0 44
0.001 0.000 0.000 0.000 0.546 0.055 4 45
0.000 0.000 0.860 4.837 0.000 0.000 4 46
0.050 0.181 3.527 4.402 0.523 1.039 0 47
0.004 0.044 2.358 4.837 0.036 0.212 3 48
0.005 0.347 2.185 1.999 0.103 1.537 1 49
0.000 4.281 0.000 0.000 0.000 0.000 5 50
1.939 1.910 3.856 5.503 3.163 3.307 0 51
0.141 0.000 0.000 0.000 0.025 0.377 4 52
0.003 4.472 0.003 0.003 0.000 0.023 5 53
0.035 0.000 0.000 0.000 0.000 0.060 5 54
5.498 0.000 0.000 0.000 0.000 4.845 4 55
0.013 0.125 3.852 2.282 0.046 0.360 2 56
0.000 0.000 1.843 4.369 0.000 0.000 4 57
1.922 0.000 0.000 0.000 0.000 0.043 5 58
0.001 3.012 0.389 0.026 0.000 0.179 3 59
0.000 1.570 0.001 0.000 0.000 0.000 5 60
0.000 0.000 0.128 4.872 0.000 0.000 4 61
0.003 0.000 0.001 0.004 0.608 2.054 4 62
0.000 0.000 5.106 3.456 0.000 0.000 4 63
0.000 0.000 0.000 3.333 0.012 0.000 5 64
0.021 4.789 0.065 0.001 0.000 0.039 4 65
0.002 0.466 0.027 0.135 0.000 0.000 4 66
0.000 0.000 2.771 0.024 0.011 0.000 5 67
0.000 0.000 2.909 0.075 0.000 0.000 4 68
0.020 0.000 0.000 0.001 0.004 3.581 5 69
4.481 0.130 0.709 0.038 0.293 2.110 1 70
0.511 0.008 4.589 0.332 1.616 0.115 1 71
0.016 0.000 0.010 0.014 0.654 0.479 4 72
By expressing the conditional relative frequencies in terms of joint
frequencies, that is,

f (a0|b0) =
n(b0, a0)
n(b0, ·)

, f (b0|a0) =
n(a0, b0)
n(a0, ·)

, . . .

being n(b0, ·) and n(a0, ·) the marginal frequencies of B and A,
respectively, we obtain

log

n(b0, a0)
n(b0, ·)

n(b0, ·)
n(b0, a1)


= log


n(a0, b0)
n(a0, ·)

n(a0, ·)
n(a0, b1)


,

or simplifying

log

n(b0, a0)n(a0, b1)
n(b0, a1)n(a0, b0)


= 0. (35)

We can thus test indifferently Eq. (34) or (35).

Appendix B. Results of the tests for the first data set

See Table 7.
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